Wednesday, December 28, 2016

Who should pay to plow DCR paths? How about the DCR?

Once again, Twitter has reminded us about the inequities of transportation funding: for the severalth year in a row, New Balance is paying to plow the Charles River esplanade paths along the river in Boston. While there's nothing wrong with this per se—and it may be marketing New Balance is happy to pay for—it shows where our priorities lie. The DCR—which stands for Department of Conservation and Recreation, if you've forgotten—has no problem finding the money to plow the roadways which provide transportation along the Esplanade. But when it comes to the pedestrian and cycling paths, they cry poor and make someone else come up with the money.

This is similar to the reaction over the rebuilding of Greenough Boulevard along the river. Everyone was over the moon that the Solomon Foundation had come up with the money to repurpose the roadway from four lanes to two, and to fix an entirely substandard portion of the path there. Yet no one bothered to ask: why do we need a private foundation to fund work the DCR should be doing anyway? The DCR didn't get a foundation to pay for the guardrail replacement along Storrow Drive, nor did they go looking for a handout from Ford, GM or Toyota. There was a safety issue, and they paid to fix it. They're happy to do that for roadways, but cry poor when it comes to paying for non-motorized use.

This page has also pointed out that the DCR could recoup hundreds of thousands of dollars a year by monetizing the parking along Memorial Drive near Kendall Square, yet this resource sits fallow. Perhaps next year we could take some of this money to clear the sidewalks, and New Balance could make a donation instead to buy running shoes for students in Boston Public Schools. That would be a more appropriate use of their funds.

Otherwise, I'll be heartened when I see a Tweet that the DCR announces that, thanks to donations from Ford Motor Company, they'll be clearing snow off of Storrow and Memorial Drives during the winter, rather than just closing them down whenever snow falls. I expect I'll be waiting a while for that.

Wednesday, December 21, 2016

The T is sort of fixing East-West (!)

Back in September, some of the #10PeopleOnTwitter pointed out that there was something amiss with the T's end-of-service procedure (called "East-West", because it's when the trains leave Park to the east and the west). What should be a relatively quick process was frequently taking more than half an hour. Looking in to the schedule, I realized it was because a certain train from Heath had a guaranteed connection at Park, and was scheduled 20 minutes after the other trains, every train—and every downstream bus—was delayed.

So I wrote a blog post, with some help from a variety of people on Twitter (with screen grabs, coding and the like), put some numbers to it, and let it rip. Jim Aloisi wrote about it, the T took issue with the numbers, Jim shot back at them, and the issue was left unresolved: for the most part, it seemed like the T was uninterested in something which would both save them money and create a better experience for their passengers. No one reached out to us (other than to yell on the Internet at Jim) and it was left at the T saying "nothing to see here; this isn't a problem."

And yet … this week, the Fiscal Management Control Board announced that, as of the new schedule rating at the end of the month, the 12:47 car from Heath Street will no longer have a guaranteed connection at Park; instead, the 12:32 car will. This should mean that the E train will no longer be guaranteed to hold up the process (other lines still might, of course). While us Twitter folk certainly wouldn't mind the recognition, I think we're all glad that the T is going to make this change. So, this is kind of a big deal. Yes, we will be monitoring it after the first of the year to see how the changes play out.

(My ask: that the T have some sort of petition system for this. If you write a petition, and you get x number of people to sign on, they at least give you a response. There are a lot of things that riders may see that management does not. My other ask: take the savings from this, and run late night service.)

Friday, December 2, 2016

The Track 61 High Speed Line (and new trains for Mattapan)

The Mattapan Line deserves new rolling stock, but buses make no sense. It's not that the PCCs which run the line are unreliable—they're plenty reliable—but parts are hard to come by (some are custom made by a museum in Maine) and the fleet is a throwback to the 1940s, making the 1969-era Red Line cars look young by comparison. New, modern streetcars could each carry nearly double what a PCC does with more low-floor doors for far more efficient boarding. By spreading weight across three trucks (sets of wheels) instead of two, the whole "the bridges won't support larger vehicles" straw man. (PCC: 18,000-21,000 lbs/truck, plus air conditioning units, Seattle streetcar: 22,000 lbs/truck.) The bridges likely need some work anyway, and a concrete deck to support buses weighs a heck of a lot more than ballast and track (buses need a lot of concrete). And the T is good at quickly replacing old bridges. So maybe you just replace the bridges.

For example, the Seattle streetcars cost on the order of $3.2 million each, and Mattapan would likely need five streetcars, and two spares, to run service, so about $22 million overall. Streetcars are spec'ed to last 30-40 years, so it's a $500,000 investment per year. 10 buses, at $750,000 per bus, would cost $7.5 million, but only last 12 years, so the capital cost would be about the same (30 buses over 36 years = $22.5 million, slightly less given a discount rate, but at least right now, money is cheap). And the cost to convert the corridor to bus transit—given BRT costs of $10-$50 million per mile—the cost of vehicles would be dwarfed by the cost of concrete. The answer for Mattapan is easy: just buy modern streetcars for the Mattapan High Speed Line.

But then what do you do with the PCCs? They're still sort of useful transit vehicles, and it's not hard to look at San Francisco to see where PCCs operate as both transit vehicles and as transit and as a rolling museum (and tourist attraction). We won't run PCCs in mixed traffic on the Green Line any time soon (or probably ever), but there is somewhere that the fleet could provide a useful transit connection and operate in a tourist-friendly location: between Andrew Square and the Convention Center.

Why this route? While older streetcars could conceivably run on surface lines (and did as recently as the late 1990s) doing so with any regularity would have liability and accessibility concerns, and decrease the capacity of the Boylston-Tremont subway dramatically, where a slot using a 45-foot PCC is far less efficient than one with a two- or threee-car LRV. It would also require pantograph conversion. San Francisco gets around this by running the PCCs on the surface of Market Street with the light rail in the tunnel below (which was built in 1982, only 85 years after the Green Line went underground in Boston). Basically, in Boston, the current light-rail lines are out.

So that leaves a purpose-built line. Nearly every rail right-of-way in Boston is used for rail service, or has been converted to a multi-use pathway. (For instance, Minneapolis runs historic streetcars on an old section of streetcar right-of-way, but other than a short portion of the Fells, we don't have that.) With narrow streets, we can't easily throw in something Kenosha-style. But there is one stretch of railroad track in Boston which sits unused: the so-called Track 61 in South Boston.

The state currently owns Track 61, but it hasn't been used for freight service in decades (and other than vague platitudes, there are no plans to do so any time soon.) There have been calls to run DMU service on Track 61, but this is such a risible plan—crossing the Northeast Corridor and Old Colony lines at-grade, at rush hour, in a roundabout route—that it will never happen, even if the T were to acquire the appropriate rolling stock. Recently the City of Boston has proposed using it for a split terminal from the Fairmount Line, which is more feasible, but still requires a diamond crossing of the Old Colony Line, and the desire line of the Fairmount Line almost certainly aims downtown (and where there is a Red Line transfer), not at the Seaport. If freight were ever to run across the line, streetcars would not preclude future freight use at off hours (which is done in several other corridors) if shipping traffic required a daily freight movement on the line.

The route of Track 61 and an extension to Andrew in yellow.
It's the route of Track 61 which is most intriguing, as it would make a last-mile connection between the Red Line and the Seaport, which currently requires a ride on two over-capacity transit lines (the Red Line to South Station and the Silver Line to the Seaport). For commuters from the south going to the Seaport, a transfer at Andrew would save five minutes of commute time, and (more importantly) it would pull some demand off of the Silver Line at rush hour, when buses run every minute-or-so at crush capacity and leave passengers on the platform. With some minor (seven figure) improvements (stations, overhead, a couple of interlockings), there is an unused rail corridor with mostly-existing rail on which the PCCs (or new rolling stock) could be run in relatively short order.

The key would be to find both funding and possibly a non-MBTA operator. (Power could be acquired from the adjacent MBTA facilities, but it could be run by a different organization. Let's start with funding: there are mechanisms in place. Capital costs could come from a TIGER-type grant, and operating costs from a transportation management association or perhaps from the Mass Convention Center Authority or even MassPort, especially since they have hundreds of millions of dollars for parking garages in the area (maybe, uh, we shouldn't build that parking garage, wait, don't call it that).

Amazing! Trams/streetcars can have level boarding.
(Minneapolis-Saint Paul "Metro")
As for the rolling stock: The current PCCs are inaccessible, but are made accessible with high-platforms along the Fairmount Line. This could be replicated along Track 61, especially since the stations would be built from scratch and fewer in number. (In theory: Andrew, Broadway, Convention Center, Black Falcon.) More likely would be low-platform modern trams (and by modern, I mean "flush with the platform") to run on the line with PCCs used for supplemental service (weekends, middays, etc). It might be possible to strike a deal with the Seashore Trolley Museum to both use the Seashore-owned 5734 (which likely needs some rehab but ran within the past 20 years and has been stored underground at Boylston) and perhaps relocating some other MBTA equipment from there for an outpost of the Maine facility: a small, San Francisco-style rolling museum showing the transit history of the oldest subway in the country.

DMUs and commuter rail to the Seaport is a round-peg-square-hole issue. The scale is not really appropriate (especially if it is diesel, with more local particulate emissions in a high-density residential community) and the routing certainly isn't. (There's also the matter of significant single-track, which is easier to navigate with light rail equipment.) Track 61 shouldn't be let to sit and fester for the next 25 years. But if we do something with it, let's do something sensible.

Friday, October 28, 2016

Free Parking? Good in Monopoly. Bad on Memorial Drive

Cost to park: $0.
If you want to go to a Massachusetts State Park, you generally have to pay a parking fee. For $5 or $8 or more you have the privilege of parking on DCR-owned land. If you want to go to Kendall Square—where the going rate for parking is $25 to $30 per day—the DCR has a great deal for you! You can park in one of the 130-or-so parking spaces along Memorial Drive (and another 70 along Cambridge Parkway in East Cambridge) for free!

Does this make any sense?

Everywhere else in Cambridge is either metered parking or resident permit parking (and, yes, resident permits should cost more). The only free spaces in town are on DCR roadways: these spaces, and a few more along Memorial Drive up near Mount Auburn Hospital. The DCR is sitting on a bit of a gold mine: installing meters and charging for parking could bring in close to a million dollars per year.

Let's imagine that the DCR decided to charge market rate for parking in the area: $2 per hour with a maximum of $20 per day. The cost to install a dozen-or-so parking kiosks would probably run in to the range of $100,000. Enforcement would likely pay for itself with parking tickets. The revenue? Assuming an average of $20 per day on weekdays (through casual parking or charging a daily rate) for the 200 spaces would raise $4,000 per day. With 250 work days in a year (give or take) it adds up to one million dollars. (Even if it was charged at a $1 per hour rate commensurate with the too-low rate for meters along Mass Ave and Vassar Streets, it would bring in $500,000 per year.)

There would be benefits for users, too. Right now, MIT has precious little short-term visitor parking on campus other than a lot on the corner of Vassar and Mass Ave (Rates: $8 per hour, $26 daily). By properly pricing spaces on Memorial Drive, it would give the area a source of open short-term parking, not long term car storage where finding a spot during the day is all but impossible. It would also help to reduce the demand for parking along the adjacent portion of Mass Ave, which could be reused as room for transit lanes and protected bicycle facilities.

And the money? It could be earmarked for non-road projects in the area. The DCR often cries poor when it comes to building sufficient bicycle and pedestrian facilities, but they're all too happy to keep the roads in ship shape for cars. (There are too many examples including: 1. they refused to rebuild Greenough Boulevard until a private organization coughed up nearly half of the $1.2 million cost. 2. They get New Balance to sponsor the snow clearance of the bike paths along the Charles, yet they don't hold drivers hostage until Ford and GM pony up to plow Storrow Drive.) A million dollars a year could keep the paths clear of snow, and pay for sorely-needed upgrades. They have a master plan for the Charles River basin but haven't identified a source of funding. Uh, guys …

This is such a no-brainer that it's almost criminally negligent that the DCR hasn't been cashing in on parking fees on Memorial Drive for years. This could be implemented tomorrow (although the historical society would probably throw up a frivolous objection) and the money would start coming in immediately. The DCR has done a fine job rebuild the paths between the BU and Longfellow bridges. There are plenty more sections of the bike paths which could be improved.


Thursday, October 6, 2016

It's time to #FixMassAve

I should be doing reading right now for Fred's class, so forgive me, Fred, if my response this week is a little thin, but it's time to talk about fixing Massachusetts Avenue.

Mass Ave is the north-south thoroughfare for Boston and Cambridge. It may not have as many cars as some other roads, but with the Red Line, and cyclists, and especially tens of thousands (perhaps more than 100,000) bus passengers along much of it, it is the main drag. It connects Harvard, MIT, Berklee, Symphony Hall and Boston Medical Center and comes within a stone's throw of the MFA, the BPL, BU and Northeastern. It doesn't touch downtown Boston, but does touch some of the most important innovation, education and medical centers in the state, if not the world.

The level of human capital along Mass Ave may be unmatched by any single four-mile stretch of roadway in the world. Yet we accept a dangerous road choked with single-occupancy vehicles blocking transit vehicles and endangering the lives of everyone else. This must change.

In the last five years, there have three cycling fatalities on the street that I can think of off my head: One at Beacon, one at Vassar and the most recent one in Porter Square. All have involved large commercial vehicles. These have not been daredevil bike messenger types: they've been doctors, researchers, and engineers; the "second order" of cyclists: the people who are biking because there are better facilities and because there are more cyclists.

But the facilities we have are disconnected, and they are not good enough. There have been innumerable close calls. Buses transporting thousands cut in and out of stops across the bus lane because god forbid we would remove parking to build floating bus stops or separated lanes. The road was designed, mostly in the 1940s to 1960s, for throughput and parking, even though people in cars are the minority of users of the corridor.

It's high time for that to change.

This page (and its author) has spent a lot of time discussing Mass Ave and advocating strategies to make it a complete street, one built for safety of all users first, and then built for transit, bicycling and pedestrians before people in cars. (Deliveries are important, too; we should build loading zones where commercial vehicles can safely load and unload without impeding traffic.) It is time to stop talking about what we could do and start talking about what we will do. In many cases in Boston and Cambridge, street real estate makes such implementation quite hard: we're an old city with very narrow streets. But not on Mass Ave. In most cases, there's plenty of room to build something better. Parking on both sides: medians (I'm looking at you, highway north of Harvard Square), multiple lanes catering to people in cars at the expense of everyone else.

Mass Ave connects many some of the great institutions of the world. Technology? MIT and Kendall Square. Law, arts, sciences? Harvard. Contemporary Music? Berklee. Classical Music? Symphony Hall. Cities? Boston and Cambridge. Yet these institutions are linked by a thoroughly mediocre street, one which wouldn't pass muster in many of the world's great cities.

Here's what I have so far. Let's talk about this further. Let's meet and talk about the plusses and the minuses. Let's not leave anyone out, but let's remember that it's 2016, not 1966, and we're planning for a sustainable, mobile future, not one where everyone sits in a traffic jam:

Harvard-Porter-Arlington
Central Square
Harvard Bridge
Beacon Street

So here's my call to politicians and citizens: let's make that change. Let's rebuild a Mass Ave that works for everyone, not just people in cars. Let's create a street that says: "yes, this is a place I want to be, and a place I want to go." Let's #FixMassAve.

Now, back to my reading.

Monday, September 12, 2016

A single letter costs the T $2–3 million every year

Every night in Downtown Boston at about 12:45 a.m., a procedure, in theory, occurs to allow passengers to transfer between trains downtown and not miss the last train. (This dance is called "East-West"; the name probably goes back decades.) Here's how it should work (note that this is from an operations standpoint; passengers transfer as they normally would):
  1. The final Green Line trains from Lechmere, Boston College, Cleveland Circle, Riverside and Heath Street arrive at Park Street. 
  2. The last southbound Orange Line train waits at State Street for the last inbound Blue Line train.
  3. Once it arrives, the Blue Line train continues to Bowdoin, loops, and waits at Government Center. The Orange Line train proceeds south to Downtown Crossing.
  4. The last Alewife Red Line train leaves Downtown Crossing when this Orange Line train arrives and runs to Park.
  5. Passengers at Park transfer between Red and Green Line trains. Once this occurs, these trains are released, and a domino effect takes place.
  6. When the Ashmont-bound Red Line train gets to Downtown Crossing, the Orange Line trains waiting there are released. (There's no guaranteed last connection for Braintree passengers.)
  7. When the northbound Orange Line train gets to State, the Blue Line train there is released. There is a second meet (which is not necessary) between this train and the Lechmere Car at North Station.
  8. This is what the last train ballet should look like (thanks
    to Mark Ebuña for the screen grabs). These trains would
    remain stationary for more than 20 minutes. And that's
    on a good night.
  9. As these trains propagate out through the system, 56 "w" trip buses (the schedule notation of "w" means that a given bus will wait for the last train, although a few schedules use other letters) wait for transfers before making their last trips outbound, completing the domino effect.
The rail portion of this ballet, again in theory, should take about 8 minutes. The last trains out of Park Street are scheduled out between 12:45 and 12:53 (the later times because four Green Line trains have to all leave in succession on a single track). The system can then be shut for the night, leaving a bit more than three hours for track maintenance before the first trains the next morning.

Unfortunately, in practice, that's not how it works. As Marc Ebuña tweet-stormed recently, it takes a whole lot longer. And this costs the T a lot of money.

The last train connection is not guaranteed for passengers to Heath Street (who can take the 39 bus, which is held for connections at Back Bay), but it is guaranteed for Lechmere. Since there's no layover at Heath Street (since the Arborway terminus was abandoned), these trains have to turn back in to layover at Lechmere. The last train to Heath Street leaves Park at 12:30, arrives Heath at 12:47, and turns back to Park, with a scheduled arrival of 1:06. (In 2007, this train was scheduled 10 minutes earlier, and the "w" note was not present as recently as 2013, although I believe the T has guaranteed these schedules before then.) And this train is given the "w" notation, so that while every other train should be—if they're on schedule—ready to depart at 12:45, they wait for another 21 minutes before making this connection. And if the Lechmere train is late? The trains still wait. On September 4, for example, the Red Line waited 40 minutes.

This letter costs the T at least $3 million per year. The "w" notation reads:
"Last trips wait at some stations, primarily downtown, for connecting
service. Departure times are approximate."
This is entirely unnecessary. Earlier Lechmere trains are just as able to make the connections. There's a train scheduled to arrive Park at 12:41. If this train were the "w" train, it could drop passengers at Park and continue to Lechmere; any later train could pick up any passenger waiting, but connections for arriving passengers on such a late train would not be guaranteed, other than for buses meeting this train at Lechmere. Or these trains could be operated as non-revenue services, and the 39 bus, which connects inbound with trains at Copley, could provide this service. Other than a few late riders inbound on the E Line, no passengers would be adversely impacted, while every other passenger on the system waiting at least 20 extra minutes (the earliest the last Red Line has left Park Street in the past 30 days has been 1:09, the average has been 1:19—thanks for the coding from @MBTAinfo) would benefit. I'm usually not one to advocate for earlier service, but in this case, either publish a later, more truthful schedule, or run the service on time.

Then there are the costs, which cascade very quickly through the system, since the single Lechmere trip which operates late causes trains on every other line, and 56 bus trips, to all experience delays of at least 20 minutes. But the operators still get paid (overtime, in fact) and the power stays on and the inspectors keep the stations open and the operations staff stays on duty until the last trains pull in. It costs nearly as much money to keep a train stationary as it does to run it, and with overtime, it may cost more. In 2014, the T reported that a bus cost $178 per hour to operate, a heavy rail car $240 and a light rail car $264. Giving them the benefit of the doubt that they're operating single car green line trains, the cost per hour of four light rail cars (B, C, D and Mattapan), 30 heavy rail cars (five trains at six cars each) and 56 buses comes to $18,224 per hour, or $304 per minute. If the Lechmere car causes a 21 minute delay (as scheduled), this costs $6,384 per day, or $2.33 million per year. In fact, the average delay is more on the order of 34 minutes, which costs $3.77 million. This assumes that all delays are caused by the late Lechmere car; if we attribute 20% of the delays to other causes, there is still a direct operating cost of 1.9 to 3 million dollars per year. (These costs are likely even higher now.)

Two to three million dollars. All because of a "w" on the schedule.

But it gets worse. The T has precious little time between the end of service and the first trains the next morning; most lines aren't scheduled to be cleared for powering down or work until about 1:30, leaving only about three hours and thirty minutes until service starts in the morning. A 20 to 30 minute delay accounts for 10 to 15% of this time, meaning work crews have to wait for this unnecessary delay before performing maintenance.

Then there are the passengers. If you take the last train, the schedule—and any real time data—will show it coming at a certain time. But you'll either wind up standing on a platform for 20 to 30 extra minutes, or sitting on the train downtown for that amount of time. There is probably significant ridership loss from people who know how long the wait takes, and choose another mode. This fare revenue is probably minimal in relation to the operating costs, but certainly not zero, but the impact to passengers is more drastic. If we assume just 10 passengers per rail car and two additional passengers on each bus who don't transfer from a train), it amounts to 450 passengers each inconvenienced by 20 to 30 minutes. That adds up to 150 to 225 hours per night, or 50 to 75 thousand hours per year.

The FMCB's response to a budget gap has been to push privatization, which is not guaranteed to fill any such gap, but will draw the ire of the unions and potentially degrade service. Yet various measures which this page has noted have fallen upon deaf ears. There's a lot of money to be saved at the T. There's a lot of very low-hanging fruit. (Like publishing a set of schedules without a "w" for the 12:47 departure from Heath Street. And who reads paper schedules, anyway?) This problem would be very easy to fix: the next schedules would be amended with a different note for the E Line, perhaps "x: last trip making connection downtown departs Heath Street at 12:25."

Making that change would go a long way towards paying for real, actual overnight service.

[Thanks to James Jay for noticing this, Marc Ebuña for burning the midnight oil, @MBTAinfo for the code and Stefan! for the maps.)

Wednesday, September 7, 2016

How MassDOT stacks the deck: Red-Blue edition

The Red-Blue connector is probably the biggest bang-for-your-buck piece of rail infrastructure in the Commonwealth of Massachusetts. With 1300 feet (¼ of a mile) of new subway, it would both provide a much better connection between East Boston, the airport and and the Red Line and serve as a major core capacity project. From the south, the Red Line, at rush hour, operates at peak capacity through downtown to Charles; as it drops passengers at South Station, Downtown Crossing and Park, it takes on transferring passengers and the load stays high. At Charles, however, there are many more destinations than origins, and demand drops. Right now, all Blue Line passengers destined for Kendall or beyond are forced on to the Green or Orange line and the Red Line at this high-utilization point. The Red-Blue connector would allow them to bypass this downtown congestion, reducing the strain on the near- or at-capacity central portion of the subway network. (Oh, and it would also allow a rethinking of Cambridge Street, which is incredibly dangerous for anyone not driving a car. But it has a pretty median.)

This page, in the past, has suggested that it may be cheaper to build an elevated Red-Blue connector, and also cast doubt (twice!) on the MassDOT's cost estimates. Their claim is that it would cost $750 million to make the extension; which is a cost per mile of $3 billion. This per-mile cost is double the cost of recent tunnel projects in Seattle and San Francisco (where, as you may be aware, they have earthquakes) and even more than the Second Avenue Subway in New York. It's a completely outlandish number.

And this is entirely by design.

The state is required to plan the Red-Blue connector, but they're not actually required to build it. Because MassDOT is, at some levels, a morass of incompetence (see Extension, Green Line), they operate under the assumption that nothing new should ever be built, even if there are dramatic improvements to the overall transportation network. Remember, these are the same people who look at ridership growth and declare it "basically flat." But not only do they want to do as little as possible, they actively stack the deck against their designs to come in so costly that they don't make sense to build. This is the idea: inflate the cost so much that it would not make any sense to build. It's deceitful. It's duplicitous. And at MassDOT, it's standard operating procedure.


(On the other hand, when MassDOT—or MassHighway—wants to build something, like the outlandish mutil-tunneling of rail lines in Dorchester to add highway capacity to the Southeast Expressway, they don't bother to put forth a cost estimate. Or remember when we didn't add a lane to 128 because it was going to cost too much? Yeah, me neither.)

Here's how it's done. As we discussed, there is an existing tunnel to Joy Street which was used until the 1950s to move East Boston cars to the old Bennett Street Yards in Harvard Square for heavy maintenance. The obvious solution is to use as much of this tunnel as possible—both to minimize digging in the street and to minimize disruption to current service—yet the state's two alternatives don't use it at all. Instead, with minimal justification, they propose a half-mile-long deep bore tunnel 50 feet below grade, tying in with the existing tunnel just west of Government Center. Using tunnel boring machines (TBM) makes sense for tunnels of any length, as the impact to the surface is significantly less. It is also, for longer tunnels, significantly cheaper than cut-and-cover methods. It's fine to have that as one alternative—there are certainly advantages to using a TBM—but the fact that the alternative analysis only mentions TBMs makes it, well, not really an alternatives analysis at all.

The benefits of a TBM, however, only accrue for longer tunnels. The marginal cost of an extra foot of TBM tunnel is relatively low, but the initial cost is very high. A cut-and-cover tunnel here would require 1300 feet surface impact. Using a TBM would require less, but only slightly. Why? Because you still have to dig launch and recovery boxes for the TBM, and where the tunnel needs to be wider for stations or crossovers, it has to be dug out. Considering the substrate in Boston (mud and clay) a TBM would have to build concrete rings as it digs, and any stations or crossovers between the tunnels would have to be dug out separately. And while the total disruption would be somewhat less than a cut-and-cover tunnel, the disruption would be more spread out and extend much further, from Charles Circle to or beyond Government Center, rather than from Charles to Joy Street. Utilities would be affected in either scheme, and it's possible that fewer utilities would be affected by a more-contained scheme between Charles Circle and Joy Street.

So in addition to carving up nearly as much street space, and over a longer distance, you'd also incur the cost of using a tunnel boring machine (they're not cheap). You'd be building nearly a mile of new tunnel, while only incurring the benefit of about a quarter of that. And the costs are therefore much higher. This only makes sense if you don't actually want to ever build anything.

MassDOT's plan would also build tail tracks under Charles Circle beyond the station. Tail tracks are important: it allows a terminal to continue to operate at full capacity even if a train is incapacitated: it can be shoved in to the tail track and out of the way until the end of service (or until service levels are decreased). However, they take up a good deal of space. This is less of an issue if there is extra space (like there is at Forest Hills, Wonderland or Oak Grove) or at Alewife, where the line was originally built to extend to Arlington (the tail tracks actually do cross the border). But in downtown Boston, the tail tracks require significant extra tunneling under Charles Circle, which is expensive and disruptive.

A different, more outside-the-box option is to create a "pocket track" before the final station. This serves the same purpose as the tail track—train storage near the end of the line—but rather than two long tails, it is in the middle of the two tracks short of the station. All this requires is that the tunnel be built wider here (the same width as the platform to the west requires) for this staging track. Additionally, by utilizing the existing layout at Bowdoin (with, perhaps, some modification for longer trains inbound, or even converting the station to outbound service only), the line would retain the utility of the loop there, which is eliminated in both of the state's alternatives. While this does result in slower operation in and out of the station, it allows redundancy for turning trains: if there is any congestion or another issue at Bowdoin, some or all trains can be turned temporarily at Government Center to maintain service on the rest of the line. Eliminating this loop eliminates any such redundancy. A pocket track and the retention of the loop are nearly impossible with a bored tunnel but with cut-and-cover simply requires a somewhat wider dig.

By requiring long-term construction closure of the line west of Government Center, the state's plan would also require new construction of a terminal station there. Government Center does have a crossover to its east, but it is a single crossover, which would not be able to handle the rush hour Blue Line schedule. This would require a new double crossover to be installed in what is a narrow section of tunnel. Utilizing the existing tunnel past Bowdoin would preclude this extra cost, as trains could continue to loop there during construction. There would be no disruption when the extension opened—not even a weekend shutdown to tie in new tracks. The same can't be said for the State's scheme.




Here's a quick rundown on the major elements required to build the state's version of the Red-Blue Connector:

  • A launch box for the TBM
  • Cut-and-cover tail tracks west of Charles Station
  • Main access to the Charles Station (planned 50' below grade)
  • Charles Station, proposed as a sequentially excavated cavern but with no explanation of how that will be done in the fill-and-clay substrate in the area.
  • Emergency egress from Charles Station
  • Crossovers east of Charles Station
  • New Bowdoin Station (alternative 2 only)
  • Modification of existing Bowdoin Station and trackage to serve as ventillation (alternative 1 only)
  • Receiving shaft for Bowdoin station
  • Cut-and-cover track for connection to existing track at Government Center
  • New crossover west of Government Center to allow it to serve as a terminal station
  • Total cut-and-cover of approximately 800 feet, assuming the Charles Station can be built below grade (I'm skeptical).
And here's a rundown of the elements required for a cut-and-cover tunnel from Joy Street to Charles Circle:
  • Main access to Charles Station (20' below grade)
  • Charles Station cut-and-cover
  • Secondary access to Charles Station (possible because it would require only 20' of vertical circulation, rather than 50')
  • Cut-and-cover crossovers and pocket track
  • Cut-and-cover connection to existing tail tracks at Joy Street
Here's my total-guess cost estimate for the cut-and-cover costs (and I think many of these are quite high):

1. Utility Relocation: 0.25 miles at $100m/mi = $25m
2. Cut-and-cover tunnel (mostly 40' wide): 0.25 mi at $600m/mi = $150m
3. Rail systems: 0.25 mi at $100m/mi = $25m
4. Egress, NFP130, etc: 0.25 mi at $200m/mi = $50m
5. Station, 1 at $50m = $50m
6. Street rebuilding, 0.33 mi at $75m/mi = $25m

This totals to $375 million, or half of what the state's plan would cost. There's no way to know much the state thinks it would cost, because they didn't bother to analyze this alternative as part of their alternatives analysis.

Now, the state did address the difference in cost between a bored tunnel and a cut-and-cover tunnel. Well, sort of. The draft environmental impact report has the clause:
The resulting total cost (direct plus offsets) to construct a cut-and -cover tunnel shell is about 1.2 times the cost of the mined tunnel method. This differential may slightly decrease when the balance of construction scope (e.g., station components common to both Build Alternatives) is considered. Based on this relative cost differential and the associated environmental and social impacts, schemes utilizing mining methods were selected for further development and evaluation. 
Uh, this isn't really how an alternatives analysis works. In a complex construction project, 20% is basically a margin of error. As we've seen in some other deep boring construction, it's not uncommon to have an unforeseen obstruction which can dramatically increase the cost of a project. This can also be an issue with a cut-and-cover tunnel, although Cambridge Street was widened in the 1920s so the utilities there are a bit less complex than the centuries-old sewers under many Boston streets. The point of an alternatives analysis is too look at different alternatives and see which is the most appropriate. In this case, there are not enough alternatives, and very little actual analysis. I wouldn't be surprised if a full analysis showed that 1300 feet of a cut-and-cover tunnel was a good deal less expensive than twice as much deep bore tunnel and the additional track connections involved.

And there is no information in this report about how they are going to build the Charles Blue Line Station 50 feet underground in the substrate of Boston with sequential mining. The Second Avenue Subway is being built in hard Manhattan schist which can be blasted apart while still maintaining structural integrity above. I'm not an engineer with this sort of experience, but given that there is no explanation of how it would take place, I'd have to doubt its veracity. The current idea is explained that the tunnels would be bored and then the station areas would be mined out in between the bored tunnels, using their structure to support the road above. I guess that could work. But it seems to add several steps (and thus increase the cost) by building the tunnels only to hack them apart to build space for stations and crossovers in between. When asked in 2011 if it was inflating the costs of the project, MassDOT was very defensive in claiming that they weren't, and that Very Important People said the same thing, yet they didn't actually explain why they chose the scheme that they did (beyond "we hired someone") and as I outline here, it seems they put their thumb on the scale.

Even giving them the benefit of the doubt that a bored tunnel is the best option, the cost estimates seem out of hand. The cost of the 72nd Street Station cavern—which is 1300 feet long, the length of the Red-Blue connector from Charles to Joy Street—plus the track connections to 63rd Street is $431 million, significantly less than the Red-Blue connector. This, for a project taking place 100 feet below the street in New York City, which may be the most expensive construction market in the world.

To put it another way, I find it very hard to fathom that a ¼ mile cut-and-cover tunnel with a single station (for which the headhouse is already built) connecting in to an existing tunnel would cost three quarters of a billion dollars. Or $3 billion per mile. Some more comparisons? The cost of the Longfellow Bridge—twice as long, and rebuilding a century-old bridge while maintaining transit service—is one third the projected cost of Red-Blue. That can't be right. The Big Dig cost less than $3 billion per mile, to build highway tunnels three times as wide, over and under several active railroad tunnels, with more ventilation and dozens of ramps. And the Red-Blue connector would cost as much? Please.

A layman's staging plan for Red-Blue. Simplified, a bit.
A layman's plan (as follows) would involve a shallow cut-and-cover tunnel, likely using slurry walls to support the excavation. (See Dig, Big). The tunnel would be 40 feet wide at the Charles Station and to the east for the crossovers and the pocket track, where it would taper to 20 feet for the connection to the existing trackage at Joy Street. The Cambridge Street roadway is at least 64' wide between Charles Circle and Joy Street; with parking it is 80 feet wide. Assuming the construction could be completed in two phases (two 20-foot-wide excavations) with a 5 foot buffer around each, this would leave 34 feet for road for traffic during any construction, enough for two lanes of travel in each direction (or two in one direction, one in the other and an emergency vehicle access lane). Cambridge Street is currently a horror show for cyclists and not much better for pedestrians, and the project would allow a complete street to be built in its stead.

Trackwork. Click for full size.
Would there be traffic headaches during construction? Sure, just as there have been with the Longfellow Bridge adjacent to the project area. Would it be apocalyptic? Much like the Longfellow, it would not. And the effects would stretch only from Charles Circle to Joy Street, rather than the state's plan, which would have impacts extending from west of Charles Circle to Government Center, at least. In any case, either scheme will have short term traffic issues, but a long-term benefit, both with fewer vehicles and the potential to build a "complete street" with separated bicycling facilities and better pedestrian facilities. And get rid of the damn median!

There is no logical reason that the Red-Blue connector should be, per mile, the most expensive subway construction in the country. Unless it's by design. And—yes, to point a finger at MassDOT—that's exactly what I think has happened.

tl;dr: this is why we can't have nice things.