Wednesday, April 9, 2014

Autopilot and self-driving cars

Every now and again I come upon a self-driving car (or fully automated vehicle, or FAV) puff piece. Here's Robin Chase—of the Cambridgeport Chases—talking about how we'll have fully automated vehicles zipping around and shuttling us places in a matter of years. Here's the AtlanticCities talking about the steps that will be taken to give us FAVs in a very matter-of-fact way. Look, Google has one, right here! And Bridj (a press-grabbing start-up about which I am a tad skeptical—that's for another day) predicts we'll have shared, automated vans carting us around in no time. Won't it be great when we're all driving FAVs?

I'm skeptical. The main premise of four wheels and an internal combustion engine is 110 years old and hasn't really changed. But technology is great, right? Surely it will solve this problem. Planes have autopilot, so why can't cars.

Because planes have pilots, too. Jim Fallows had a piece recently about "what autopilot can't do." Autopilot doesn't land planes, and in very adverse conditions, it can not compensate for things like gusts of winds from the side. The video he shows has pilots expertly guiding planes in at an angle, then straightening out just in time to touch down and not shear the wheels off. This is not something a computer program can do, because it requires a soft touch on the rudder—and knowledge that can't really be programmed. 99% of the time, autopilot is great. But 99% of the time isn't enough.

For FAVs, the same issue will arise. Sure, 99% of the time, a fully automated vehicle will do fine. And, yes, perhaps there will come a time when FAVs are allowed to be operated on certain limited-access stretches of roadway. But while it's easy (well, not easy, but it's relative) to code a car for the same few situations that come up over and over again, it's a bit harder to solve the myriad issues that account for the other 1%, such as:
  • a patch of ice
  • a piece of debris
  • a bicyclist darting out between two cars
  • a pedestrian jaywalking
  • the proverbial child running after the bouncing ball
Autopilot for airplanes is designed for the easy-to-solve portions of a trip: the set-it-and-forget-it parts. But it still requires two pilots to keep an eye on things. And that's on airplanes with triple redundancy built in everywhere. As long as cars ply public roadways and run on an ICE, they'll need to have a human paying attention to the road ahead.

Most situations can be automated and controlled for. But driving—especially in cities—is not easily automated given a myriad of uncontrollable factors. For those situations, the human brain still is, by far, the most effective tool.


  1. I think you're giving the average driver too much credit for ability to cope with 1% situations. FAVs won't be perfect, but when I'm riding down the road on my bicycle I'd rather the car next to me be driven by a computer that's looking out the window than a person that's looking at the screen of their smartphone.

  2. But passing a bicycle is a 99% of the time—something you can code for. Passing a bicycle while approaching a patch of ice, that's a 1%.

  3. Actually, modern planes CAN usually land automatically. And the car control is a simpler problem in which the control unit is never drunk or otherwise distracted.

  4. Yes, modern planes can USUALLY land automatically. It's the times when they can't that are at issue.

  5. This comment has been removed by a blog administrator.